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0-SILYLATED DIENOLATES IN ORGANIC SYNTHESIS: 

y-SELECTIVE ALKYLATION OF UNSATURATED CARBONYL COMPOUNDS BY 1,3-DITHIENIUM FLUOROBORATE. 
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Sunimary : The alkylation of 0-silylated dienolates of unsaturated aldehydes, ketones, and esters 
with 1,3-dithienium fluoroborate shows useful y-selectivity. The y-products are selectivelypro- 
tected 1,5-dicarbonyl compounds. 

0-Silylated dienolates (1) are useful intermediates for the y-substitution of unsaturated 

carbonyl compounds. 1-3 We have found, for instance, that the reaction (1 + 2) with cl-chloro- 

alkyl phenyl sulphides (E = PhSCHR) can be used for y-alkylation and alkylidenation.‘ The crit- 

ical y:cc ratio (2:3) of electrophile attack on 1 was both sensitive to the substrate substitut- 
2-4 ion pattern and the nature of the electrophile. 

E 

(3) 

As an extension of this work, we now report that the thiocarbocation electrophile, 1,3- 

BF4- 

(4) 

dithienium fluoroborate (4), leads to synthetically useful y-selectivity (y:cr > 5:l) in the al- 

kylation of a wide range of 0-silylated dienolates (1). The y-products (2,E = 1,3-dithiane-2- 

yl) are selectively protected 1,5-dicarbonyl compounds, containing the versatile dithioacetal 

unit' for further manipulation. 

The readily available electrophile (4)6*7 reacted smoothly and rapidly with 0-silylated 

dienolates under identical conditions to those developed for O-silylated enolates (CH3N02/CH2C12, 

-7a", 10 min). 
7 

Correspondingly, we feel the y:u. ratios obtained most likely reflect the kin- 

etic selectivities of reaction. The results are summarised in the Table (5-10) and in the dia- 

grams 11-23. 
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TABLE: Reactions of Acyclic O-Silylated Dienolates with 1,3-Dithienium 

(CHSN02/CH2C12, 1:3, -78', 10 min). 

Fluoroborate (4) 

R1 R2 Y:o E:Z Yield 
for y (v+o) 

(5) Et0 H 53:47 loo:o 88% 

(6) But0 H 86:14 loo:o 91% 

(7) Me0 Me 94:6 45:55 92% 

(8) H H (1OO:O) 1oo:o 30% 

(0) H Me loo:o 40:60 61% 

(10) Me Me loo:o 46~54 87% 

The crotonate-derived O-silylated dienolate (5) initially showed only low y-selectivity, 

however, use of a bulkier alkoxy group, as in 6, produced a marked improvement in Y-selection. 
2 

The other a,E-unsaturated ester-derived substrate (7) gave a synthetically useful y:o ratio 

without this modification. The aldehyde-derived systems (8 and 9) gave no identifiable a- 

products, but the low yield in the reaction of 8 makes this particular result unreliable. The 

other acyclic substrate examined, 10, was of enone origin, and gave the y-product exclusively in 

high yield. The results for 7, 9, and 10 reinforce our earlier finding2 that an alkyl substi- 

tuent, R2, at the E-position enhances y-selectivity. Interestingly, in these cases, the y- 

product was slightly enriched in the Z-isomer,' whereas in the ZnBr2-catalysed alkylations2 the 

E-isomer predominated. For R2 = Me, the aldehyde- and methylketone-derived substrates (9 and 

10) showed higher y-selectivity than the corresponding ester derivative (7). 

We next examined the reaction of some cyclic enone-derived O-silylated dienolates (11, 14, 

17, 20, and 22) with the 1,3-dithiane cation (4). The y:a ratio was then found to be sensitive 

to the degree of substitution at the y-position, as well as at the E-position. The trimethyl- 

silyl dienol ether (11) gave the y-product (12) accompanied by only a trace of a-product (13), 

but introduction of a methyl substituent at the y-position, as in 14 for R = Me, led to the 

formation of almost equal amounts of the regioisomeric products (15) and (16).l" The y-product 

(15) could be obtained in useful yield, however, by changing to the analogous triphenylsilyl 

derivative (14, R = Ph), as recommended by Fleming and Lee.4 Alkylation at the tertiary y- 

position of 17 was adequately selective with the trimethylsilyl ether itself (17 -t 18); presum- 

ably as there is now an electron-donating alkyl substituent at the B-position encouraging y- 

attack. In the case of 20 and 22, where the y-position is secondary and also there is a 
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B-substituent, only y-products were obtained: 22 and 23,11 as 5: 1 and 8: 1 epimeric mix. 

tures respectively. 

(=I R = Me (87%), y:a 55:45 

(18) + a-product 
y:CX 84~16 

Lb Note 8 81% 

90% 
(4) 

q 

0 

Me3Si 

Me3si&i;_ 60%” o& 
WI8 P “I (24) 
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Finally,as an illustration of the synthetic potential of these products,5 hydrolysis of the 

1,3-dithiane group in 18 by HgO-BF3:OEt2 (H20-THF) 
12 

gave the aldehyde (19), representing over- 

all y-formylation. Alternatively, reductive sulphur removal may be used. Treatment of 23 with 

W-Z Raney nickel .(Me2C0, 20°, 4h)13 gave 6a-methyltestosterone (24),14 demonstrating a new 

three-step procedure for the y-methylation of A4-3-ketosteroids. 

In summary, the highly-stabilised thiocarbocation electrophile, 1,3-dithienium fluoroborab, 

is usually more y-selective than a-chloroalkyl phenyl sulphides (especially PhSCH2Cl)2 in its 

reactions with O-silylated dienolates. The introduction of the 1,3-dithiane unit as an electro- 

philic component into carbonyl compounds7 should prove a useful addition to its more common 

nucleophilic role in synthesis. 5 

The O-silylated dienolates were prepared as described in note 8. The alkylation reaction 

with 1,3-dithienium fluoroborate (4)6’7 followed an identical procedure to that described for 

O-silylated enolates (CH3N02/CH2C12, 1:3, -78’, 10 min),7 where the a- and y-alkylationproducts 

were separated by flash chromatography on silica gel. The y:o ratios were measured by 200 MHz 
1 
H NMR of the crude product mixtures and confirmed by weighing the separated regioisomers. 
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