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O-SILYLATED DIENOLATES IN ORGANIC SYNTHESIS:
Y-SELECTIVE ALKYLATION OF UNSATURATED CARBONYL COMPOUNDS BY 1,3-DITHIENIUM FLUOROBORATE.

Ian Paterson* and Lee G. Price

Department of Chemistry, University College London
20 Gordon Street, London WC1H OAJ, England.

Summary: The alkylation of O-silylated dienolates of unsaturated aldehydes, ketones, and esters
with 1,3-dithienium fluoroborate shows useful yY-selectivity. The y-products are selectively pro-
tected 1,5-dicarbonyl compounds.

0-Silylated dienolates (1) are useful intermediates for the y-substitution of unsaturated

1-3 We have found, for instance, that the reaction (1 + 2) with a-chloro-

carbonyl compounds.
alkyl phenyl sulphides (E = PhSCHR) can be used for y-alkylation and alkylidenation.2 The crit-
ical y:a ratio (2:3) of electrophile attack on 1 was both sensitive to the substrate substitut-

ion pattern and the nature of the electrophilez._4
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As an extension of this work, we now report that the thiocarbocation electrophile, 1,3-
dithienium fluoroborate (4), leads to synthetically useful y-selectivity (y:a » 5:1) in the al-
kylation of a wide range of O-silylated dienolates (1). The Yy-products (2,E = 1,3-dithiane-2-
y1) are selectively protected 1,5-dicarbonyl compounds, containing the versatile dithioacetal
unit® for further manipulation.

The readily available electrophile (4)6‘7 rcacted smoothly and rapidly with O-silylated
dienolates under identical conditions to those developed for C-silylated enolates (CHSNOZ/CH2C12,
-780, 10 min).7 Correspondingly, we feel the y:o ratios obtained most likely reflect the kin-
etic selectivities of reaction. The results are summarised in the Table (5-10) and in the dia-

grams 11-23,
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TABLE: Reactions of Acyclic O-Silylated Dienolates with 1,3-Dithienium Fluoroborate (4)
(CH.NO,/CH,C1,, 1:3, -78°, 10 min).
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for y (y+a)
(5) EtO H 53:47 100:0 88%
6 Bulo H 86:14 100:0 91%
(7) MeO Me 94:6 45:55 92%
8 H H (100:0) 100:0 30%
® H Me 100:0 40:60 61%
(10) Me Me 100:0 46:54 87%

The crotonate-derived O-silylated dienolate () initially showed only low y-selectivity,
however, use of a bulkier alkoxy group, as in 6, produced a marked improvement in y-selection.2
The other a,3-unsaturated ester-derived substrate (7) gave a synthetically useful y:q ratio
without this modification, The aldehyde-derived systems (8 and ) gave no identifiable o-
products, but the low yield in the reaction of 8 makes this particular result unreliable. The
other acyclic substrate examined, 10, was of enone origin, and gave the y-product exclusively in
high yield. The results for 7, 9, and 10 reinforce our earlier finding2 that an alkyl substi-
tuent, RZ’ at the B-position enhances y-selectivity. Interestingly, in these cases, the vy-
product was slightly enriched in the Z—isomer,9 whereas in the ZnBrz_catalysed alkylations2 the
E-isomer predominated. For R, = Me, the aldehyde- and methylketone-derived substrates (9 and
10) showed higher y-selectivity than the corresponding ester derivative (7).

We next examined the reaction of some cyclic enone-derived O-silylated dienolates (11, 14,
17, 20, and 22) with the 1,3-dithiane cation (4). The y:a ratio was then found to be sensitive
to the degree of substitution at the y-position, as well as at the B-position. The trimethyl-
silyl dienol ether (11) gave the vy-product (12) accompanied by only a trace of a-product (13),
but introduction of a methyl substituent at the vy-position, as in 14 for R = Me, led to the
formation of almost equal amounts of the regioisomeric products (15) and (16).10 The y-product
(15) could be obtained in useful yield, however, by changing to the analogous triphenylsilyl
derivative (14, R = Ph), as recommended by Fleming and Lee.4 Alkylation at the tertiary y-
position of 17 was adequately selective with the trimethylsilyl ether itself (17 » 18); presum-
ably as there is now an electron-donating alkyl substituent at the B-position encouraging vy-

attack. In the case of 20 and 22, where the vy-position is secondary and also there is a
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g-substituent, only y-products were obtained: 21 and 23,11 as 5:1 and 8:1
tures respectively.

epimeric mix-
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Finally,as an illustration of the synthetic potential of these products,5 hydrolysis of the
1,3-dithiane group in 18 by HgO-BF;:OEt, (HZO-THF)12 gave the aldehyde (19), representing over-
all y-formylation, Alternatively, reductive sulphur removal may be used. Treatment of 23 with
W-2 Raney nickel (Me,CO, 20°, 4h)13 gave 6ua-methyltestosterone (24),14 demonstrating a new
three-step procedure for the y-methylation of A4-3—ketosteroids.

In summary, the highly-stabilised thiocarbocation electrophile, 1,3-dithienium fluoroborate,
is usually more y-selective than a-chloroalkyl phenyl sulphides (especially PhSCHZCI)2 in its
reactions with O-silylated dienolates. The introduction of the 1,3-dithiane unit as an electro-

philic component into carbonyl compounds7 should prove a useful addition to its more common
nucleophilic role in synthesis.5

The O-silylated dienolates were prepared as described in note 8. The alkylation reaction
with 1,3-dithienium fluoroborate (4)6’7 followed an identical procedure to that described for

0O-silylated enolates (CHSNOZ/CH2C12, 1:3, —780, 10 min),7 where the a- and y-alkylation products

were separated by flash chromatography on silica gel. The y:o ratios were measured by 200 MHz

1H NMR of the crude product mixtures and confirmed by weighing the separated regioisomers.
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