$\label{eq:constructed} of the organic synthesis: $$\gamma$-SELECTIVE ALKYLATION OF UNSATURATED CARBONYL COMPOUNDS BY 1,3-DITHIENIUM FLUOROBORATE. $$$

Ian Paterson* and Lee G. Price

Department of Chemistry, University College London 20 Gordon Street, London WC1H OAJ, England.

Summary: The alkylation of O-silylated dienolates of unsaturated aldehydes, ketones, and esters with 1,3-dithienium fluoroborate shows useful γ -selectivity. The γ -products are selectively protected 1,5-dicarbonyl compounds.

O-Silylated dienolates (1) are useful intermediates for the γ -substitution of unsaturated carbonyl compounds.¹⁻³ We have found, for instance, that the reaction $(1 \rightarrow 2)$ with α -chloro-alkyl phenyl sulphides (E = PhSCHR) can be used for γ -alkylation and alkylidenation.² The critical γ : α ratio (2:3) of electrophile attack on 1 was both sensitive to the substrate substitution pattern and the nature of the electrophile.²⁻⁴

As an extension of this work, we now report that the thiocarbocation electrophile, 1,3dithienium fluoroborate (4), leads to synthetically useful γ -selectivity ($\gamma:\alpha \ge 5:1$) in the alkylation of a wide range of 0-silylated dienolates (1). The γ -products (2,E = 1,3-dithiane-2yl) are selectively protected 1,5-dicarbonyl compounds, containing the versatile dithioacetal unit⁵ for further manipulation.

The readily available electrophile $(4)^{6.7}$ reacted smoothly and rapidly with O-silylated dienolates under identical conditions to those developed for O-silylated enolates $(CH_3NO_2/CH_2Cl_2, -78^{\circ}, 10 \text{ min})$.⁷ Correspondingly, we feel the γ :a ratios obtained most likely reflect the kinetic selectivities of reaction. The results are summarised in the Table (**5-10**) and in the diagrams **11-23**.

TABLE: Reactions of Acyclic O-Silylated Dienolates with 1,3-Dithienium Fluoroborate (4) (CH₂NO₂/CH₂Cl₂, 1:3, -78^o, 10 min).

The crotonate-derived O-silylated dienolate (5) initially showed only low γ -selectivity, however, use of a bulkier alkoxy group, as in 6, produced a marked improvement in γ -selection.² The other α,β -unsaturated ester-derived substrate (7) gave a synthetically useful $\gamma:\alpha$ ratio without this modification. The aldehyde-derived systems (8 and 9) gave no identifiable α products, but the low yield in the reaction of 8 makes this particular result unreliable. The other acyclic substrate examined, 10, was of enone origin, and gave the γ -product exclusively in high yield. The results for 7, 9, and 10 reinforce our earlier finding² that an alkyl substituent, R₂, at the β -position enhances γ -selectivity. Interestingly, in these cases, the γ product was slightly enriched in the Z-isomer,⁹ whereas in the ZnBr₂-catalysed alkylations² the *E*-isomer predominated. For R₂ = Me, the aldehyde- and methylketone-derived substrates (9 and 10) showed higher γ -selectivity than the corresponding ester derivative (7).

We next examined the reaction of some cyclic enone-derived 0-silylated dienolates (11, 14, 17, 20, and 22) with the 1,3-dithiane cation (4). The γ : α ratio was then found to be sensitive to the degree of substitution at the γ -position, as well as at the β -position. The trimethylsilyl dienol ether (11) gave the γ -product (12) accompanied by only a trace of α -product (13), but introduction of a methyl substituent at the γ -position, as in 14 for R = Me, led to the formation of almost equal amounts of the regioisomeric products (15) and (16).¹⁰ The γ -product (15) could be obtained in useful yield, however, by changing to the analogous triphenylsilyl derivative (14, R = Ph), as recommended by Fleming and Lee.⁴ Alkylation at the tertiary γ position of 17 was adequately selective with the trimethylsilyl ether itself (17 \rightarrow 18); presumably as there is now an electron-donating alkyl substituent at the β -position encouraging γ attack. In the case of 20 and 22, where the γ -position is secondary and also there is a β -substituent, only γ -products were obtained: **21** and **23**,¹¹ as 5:1 and 8:1 epimeric mixtures respectively.

 $(23)^{11}$

Finally, as an illustration of the synthetic potential of these products,⁵ hydrolysis of the 1,3-dithiane group in **18** by HgO-BF₃:OEt₂ $(H_2O-THF)^{12}$ gave the aldehyde (**19**), representing overall γ -formylation. Alternatively, reductive sulphur removal may be used. Treatment of **23** with W-2 Raney nickel $(Me_2CO, 20^{\circ}, 4h)^{13}$ gave 6 α -methyltestosterone (**24**),¹⁴ demonstrating a new three-step procedure for the γ -methylation of Δ^4 -3-ketosteroids.

In summary, the highly-stabilised thiocarbocation electrophile, 1,3-dithienium fluoroborate, is usually more γ -selective than α -chloroalkyl phenyl sulphides (especially PhSCH₂Cl)² in its reactions with *O*-silylated dienolates. The introduction of the 1,3-dithiane unit as an electrophilic component into carbonyl compounds⁷ should prove a useful addition to its more common nucleophilic role in synthesis.⁵

The O-silylated dienolates were prepared as described in note 8. The alkylation reaction with 1,3-dithienium fluoroborate (4)^{6,7} followed an identical procedure to that described for O-silylated enolates $(CH_3NO_2/CH_2Cl_2, 1:3, -78^\circ, 10 \text{ min})$,⁷ where the α - and γ -alkylation products were separated by flash chromatography on silica gel. The $\gamma:\alpha$ ratios were measured by 200 MHz ¹H NMR of the crude product mixtures and confirmed by weighing the separated regioisomers.

NOTES and REFERENCES:

¹T. Mukaiyama and A. Ishida, *Chemistry Letters*, 319 and 1201 (1975), and 467 (1977). ²I. Fleming, J. Goldhill, and I. Paterson, *Tetrahedron Letters*, 3209 (1979). ³I. Fleming, J. Goldhill, and I. Paterson, *ibid.*, 3205 (1979). ⁴ The $\gamma:\alpha$ ratio is also influenced by varying the substituents attached to Si, see: I. Fleming and T. V. Lee, *ibid.*, 705 (1981). ⁵B.-T. Gröbel and D. Seebach, Synthesis, 375 (1977); E. J. Corey and D. Seebach, Angew. Chem., Int. Ed., 4, 1075 (1965). ⁶E. J. Corey and S. W. Walinsky, J. Amer. Chem. Soc., 94, 8932 (1972). ⁷See preceding paper. ⁸O-Silylated dienolates 5, 7, 8, 9, 11, and 14 (R=Me) were prepared as previously described;^{2,3} **6** was prepared by the same method as **5** (1. LDA, THF-HMPA 2. Me₃SiCl) in 80% yield; **10** was prepared using 1. KH, THF (20° , 0.5h) 2. Me₃SiCl in 87% yield; **17** was prepared by the same method as **11** (1. LDA, THF 2. Me₃SiCl); **14**, R=Ph was prepared by using 1. LDA, THF 2. Ph₃SiCl; **20** was prepared by using Me₃SiCl, Et₃N, DMAP (catalytic), DMF (130° , 7h) in 91% yield. ⁹ It is possible that there is some contribution from a Diels-Alder cycloaddition of acyclic sub-strates with 1,3-dithienium fluoroborate, a known dienophile, accounting for *kinetic* stereoselectivity for the Z-isomer in these particular cases. However, we generally favour direct electrophilic attack for the reactions of these electron-rich dienes. 10 We previously obtained some indication of this effect in the sulphenylations of 11 and 14_{R} (R = Me), in that 14 gave only a low yield of γ -product, although no α -product was identified.³ 11 This reaction (22 \rightarrow 23) was performed at -23°; the major 6 α -epimer (23) was separated by recrystallisation (m.p. 194-195°; cyclohexane-acetone). 12 E. Vedejs and P. L. Fuchs, J. Org. Chem., 36, 366 (1971). 13 The Ni was partially deactivated by stirring in Me_2CO (20^o, 1h) before addition of 23. 14

S. Liisberg, W. O. Godtfredson, and S. Vangedal, Tetrahedron, 9, 149 (1960).

(Received in UK 7 May 1981)